Boolean algebra

In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It
differs from elementary algebra in two ways. First, the values of the variables are
the truth values true and false, usually denoted 1 and 0, whereas in elementary
algebra the values of the variables are numbers. Second, Boolean algebra

uses logical operators such as conjunction (and) denoted as A, disjunction (or)
denoted as v, and the negation (not) denoted as . Elementary algebra, on the other
hand, uses arithmetic operators such as addition, multiplication, subtraction, and
division. Boolean algebra is therefore a formal way of describing logical operations,
in the same way that elementary algebra describes numerical operations.

A Boolean function is described by an algebraic expression consisting of binary
variables, the constants 0 and 1, and the logic operation symbols +,., For a given
set of values of the binary variables involved, the boolean function can have a
value of 0 or 1. For example, the boolean function F=x'y+z is defined in terms of
three binary variables x,y,z. The function is equal to 1 if x=0 and y=1
simultaneously or z=1. Every boolean function can be expressed by an algebraic
expression, such as one mentioned above, or in terms of a Truth Table. A function
may be expressed through several algebraic expressions, on account of them
being logically equivalent, but there is only one unique truth table for every
function. A Boolean function can be transformed from an algebraic expression into
a circuit diagram composed of logic gates connected in a particular structure.
Circuit diagram for F —

z

Canonical and Standard Forms — Any binary variable can take one of two

forms, x or x'. A boolean function can be expressed in terms of binary variables. If
all the binary variables are combined together using the AND operation, then there
are a total of 2"combinations since each variable can take two forms. Each of the
combinations is called a minterm or standard product.

In a similar way, if the variables are combined together with OR operation, then the
term obtained is called a maxterm or standard sum.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Elementary_algebra
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Truth_value
https://en.wikipedia.org/wiki/Logical_connective
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Logical_operation

Minterms Maxterms

X Y z Term Designation Term Designation
0 0] 0 xXy'? mg X+y+z Mg
0 0 1 X'y'z my Xx+y+27' M,
0 1 0 xX'yz' m; X+y'+z M,
0 1 1 x'yz ms Xx+y +7 M,
1 0 0 xy'?’ my X +y+z M,
1 0 1 xy'z ms X' +y+27 Mg
1 1 0 xyz' ms X+y +z Mg
1 1 1 Xyz m; xX+y +7 M;

Relation between Minterms and Maxterms — Each minterm is the complement of
it's corresponding maxterm.

Constructing Boolean Functions — Now that we know what minterms and
maxterms are, we can use them to construct boolean expressions. “A Boolean
function can be expressed algebraically from a given truth table by forming a
minterm for each combination of the variables that produces a 1 in the function and
then taking the OR of all those terms.” For example, consider two functions f1

and f2 with the following truth tables —

x vy z fq f»

Standard Forms — Canonical forms are basic forms obtained from the truth table
of the function. These forms are usually not used to represent the function as they
are cumbersome to write and it is preferable to represent the function in the least
number of literals possible. There are two types of standard forms —

1. Sum of Products(SOP)- A boolean expression involving AND terms with

one or more literals each, OR’ed together.
2. Product of Sums(POS) A boolean expression involving OR terms with
one or more literals each, AND’ed together, e.g.

SOP-

'+ zy +y2

POS -

(2).(x +y).(y + 2)

Simplifications of Boolean Functions

Boolean functions can be simplified using various techniques such as Boolean
algebra, Karnaugh maps, and Quine-McCluskey algorithm. In Boolean algebra, we
use the laws and rules of Boolean algebra to simplify expressions. We can convert
any Boolean expression into a sum-of-products (SOP) form or a product-of-sums
(POS) form. We can also relate a Boolean expression to a truth table and use a
Karnaugh map to simplify Boolean expressions.

Karnaugh maps are grid-like representations of truth tables that are used to simplify
Boolean algebra expressions. They provide grouping together Boolean expressions
with common factors and eliminate unwanted variables from the expression.
Quine-McCluskey algorithm is another method used for simplifying Boolean
functions. It is an iterative procedure that uses the concept of prime implicants to
simplify Boolean expressions.

Laws of Boolean Algebra:

The basic laws of Boolean algebra—the commutative laws for addition and
multiplication, the associative laws for addition and multiplication, and the distributive
law—are the same as in ordinary algebra. Each of the laws is illustrated with two or
three variables, but the number of variables is not limited to this.

Commutative Laws:

The commutative law of addition for two variables is writtenas A+ B =B + A
The commutative law of multiplication for two variables is AB = BA
Associative Laws:

The associative law of addition is written as follows for three variables: A+ (B + C) =
(A+B)+C

The associative law of multiplication is written as follows for three variables: A(BC) =
(AB)C

Distributive Law:
The distributive law is written for three variables as follows: A(B + C) = AB + AC

Rules of Boolean Algebra

Basic rules of Boolean algebra.

1.A+0=A 7.A A=A
LA+ 1=1 B.A-A=0

3.A-0=0 9, A=A

A 1=4 10. A + AB = A
5..A+A=A 1. A+ AB=A+ B

6. A+ A=1 12. (A + B)A +) = A + BC

https://www.tutorialspoint.com/discrete_mathematics/simplification_of_boolean_functions.htm
https://www.tutorialspoint.com/discrete_mathematics/simplification_of_boolean_functions.htm
https://www.tutorialspoint.com/discrete_mathematics/simplification_of_boolean_functions.htm
https://www.tutorialspoint.com/discrete_mathematics/simplification_of_boolean_functions.htm
https://www.tutorialspoint.com/discrete_mathematics/simplification_of_boolean_functions.htm
https://www.tutorialspoint.com/discrete_mathematics/simplification_of_boolean_functions.htm

DeMorgan’s Theorems

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an
important part of Boolean algebra. In practical terms, DeMorgan’s theorems provide
mathematical verification of the equivalency of the NAND and negative-OR gates
and the equivalency of the NOR and negative-AND gates.

DeMorgan’s first theorem is stated as follows: The complement of a product of
variables is equal to the sum of the complements of the variables.

The complement of two or more ANDed variables is equivalent to the OR of the
complements of the individual variables. The formula for expressing this theorem for
two variables is

XY=X+7Y
DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements of
the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the
complements of the individual variables. The formula for expressing this theorem for
two variables is

The Karnaugh Map

A Karnaugh map is similar to a truth table because it presents all of the possible
values of input variables and the resulting output for each value. Instead of being
organized into columns and rows like a truth table, the Karnaugh map is an array of
cells in which each cell represents a binary value of the input variables. The cells are
arranged in a way so that simplification of a given expression is simply a matter of
properly grouping the cells. Karnaugh maps can be used for expressions with two,
three, four, and five variables.

The number of cells in a Karnaugh map, as well as the number of rows in a truth
table, is equal to the total number of possible input variable combinations. For three
variables, the number of cells is 23 = 8. For four variables, the number of cells is 24
=16.

In many digital circuits and practical problems we need to find expression with
minimum variables. We can minimize Boolean expressions of 3, 4 variables very
easily using K-map without using any Boolean algebra theorems. K-map can take
two forms Sum of Product (SOP) and Product of Sum (POS) according to the need
of problem. K-map is table like representation but it gives more information than
TRUTH TABLE. We fill grid of K-map with 0’s and 1’s then solve it by making
groups.

Steps to solve expression using K-map-

1.
2.
3.

4.

Select K-map according to the number of variables.

Identify minterms or maxterms as given in problem.

For SOP put 1’s in blocks of K-map respective to the minterms (0’s
elsewhere).

For POS put 0’s in blocks of K-map respective to the maxterms(1’s
elsewhere).

Make rectangular groups containing total terms in power of two like 2,4,8
..(except 1) and try to cover as many elements as you can in one group.
From the groups made in step 5 find the product terms and sum them up
for SOP form.

K-map for 4 variables —

K-map 4 variable SOP form
F(P,Q.,R,S)=7(0,2,5,7,8,10,13,15)

as k-map is assumed to be
connected so we can make

RS .
/group this way
PO\ 00 01 11 (A0
00 1 0 0 1
0 1 3 2
01 0 1 1 0
4 5 7 6
11 0 1 1 0
12 13| \\ 15 14
10 1 0 (\ 1
8 9 1\, 10

N\

as we have to take maxm. elements
in a group so we've made 1 group
of41's not2 groups of 2 1's

From red group we get product term—
QS

From green group we get product term—
Qs
Summing these product terms we get- Final expression (QS+Q’S’)

K-map of 4 variables —

K-map 4 variable POS form
F(A,B,C,D)=?(3,5,7,8,10,11,12,13)

CcD
AB 00 01 11 10
00 1 1 0 1
0 1 3 2
01 1 0 0 1
L] = f [
11 0 0 1 1
12} 13} 15 14
1ol | © 1 0 0
[9 11 10)
From green group we find terms
C DB
Taking their complement and summing them
(C+D’+B’)
From red group we find terms
CDA
Taking their complement and summing them
(C'+D’'+A)
From blue group we find terms
ACD

Taking their complement and summing them
(A’+C+D)

From brown group we find terms
A B C

Taking their complement and summing them
(A'+B+C)

Finally we express these as product —
(C+D’+B’).(C’+D’+A).(A’+C+D).(A’+B+C’)

Quine McCluskey Method

Boolean function simplification is one of the basics of Digital Electronics. The
quine-McCluskey method also called the tabulation method is a very useful and
convenient method for simplification of the Boolean functions for a large number of
variables (greater than 4). This method is useful over K-map when the number of
variables is larger for which K-map formation is difficult. This method uses prime
implicants for simplification.

Quine McCluskey Method (QMC):

e Quine McCluskey method also known as the tabulation method is used to
minimize the Boolean functions.

e It simplifies boolean expression into the simplified form using prime
implicants.

e This method is convenient to simplify boolean expressions with more than

4 input variables.

It uses an automatic simplification routine.

Terminologies:

Implicant: Implicant is defined as a group of 1’s(for minterm).
Prime implicant: It is the largest possible group of 1’'s(for minterm).

Essential Prime implicant: Essential prime implicants are groups that cover at least
one minterm which cannot be covered by other applicants.

Note: This method uses decimal to binary representation.

https://www.geeksforgeeks.org/introduction-of-k-map-karnaugh-map/
https://www.geeksforgeeks.org/representation-of-boolean-functions/
https://www.geeksforgeeks.org/various-implicants-in-k-map/

Steps for Quine McCluskey Method:

~N o

Arrange the given minterms according to the number of ones present in
their binary representation in ascending order.

Take the minterms from the continuous group if there is only a one-bit
change to make their pair.

Place the ‘- symbol where there is a bit change accordingly and keep the
remaining bits the same.

Repeat steps 2 to 3 until we get all prime implicants (when all the bits
present in the table are different).

Make a prime implicant table that consists of the prime implicants
(obtained minterms) as rows and the given minterms (given in problem) as
columns.

Place ‘1’ in the minterms (cell) which are covered by each prime implicant.
Observe the table, if the minterm is covered by only one prime implicant
then it is an essential to prime implicant.

Add the essential prime implicants to the simplified boolean function.

Example: Simplify using tabulation method: F(A,B,C,D,E,F,G) = > m(20,28,52,60)
Solution: Convert the given minterms in their binary representation and arrange
them according to number of one’s present in the binary representation.

TABLE-1

Group Minterms A B C D E F G

0

20 0 0 1 0 1 O 0

28 0O 0 1 1 1 0O O
52 o 1 1 O 1 O

60 o 1 1 1 1 0O O

As 20 has 2 1s in its representation it is kept in one group(0). Similarly, 28 and 52
contain 3 1s in their representation so it is kept in the next group(1). 60 in the next

group(2).

Now, for table-2 take minterms from successive groups(simultaneous group only)
which have an only a 1-bit difference in their representation and form their pair by
merging them and making a group of the pairs which are from the same groups that
are merged (for example 20 is from group 0 and 28 is from group 1 so it is added to
the group 0. 20 belongs to group 0 in table 1 and 52 belongs to group 1 in table 1 so

its kept in the same group in table 2. Similarly, make all the possible pairs with the
help of the above table and mark — where it is a bit different.

TABLE-2

Group Pair A B C D E F G

20289 0 0 1 - 1

O @52 0 - 1 0 1
2860) 0 - 1 1 1 0

1 2600 0 1 1 - 1 0

For table 3 repeat the same step by taking pairs of successive groups merging them
where there is only a 1-bit difference and keeping them in groups according to the
groups from where they are merged and placed — in bit difference.

TABLE-3
Group Quad A B C D E F G
0 (202852600 0 - 1 - 1 0 O

After table 3 the process is stopped as there is no 1-bit difference in the remaining
group minterms in the simultaneous groups of table 3.

Now, the remaining quads present in table 3 represent the prime implicants for the
given boolean function. So, we construct prime implicants table which contains the
obtained prime implicants as rows and the given minterms as columns. Place 1 in
the corresponding place which the minterm can represent. Add the minterm to the

simplified boolean expression if the given minterm is only covered by this prime
implicant.

A'CEF’'G’ is obtained from table 3 as A, F, G contains 0 so A’F’'G’, C, and E contain
1so CE.

Prime Implicants Table

Minterms -»

Prime Implicants ¢ 20 28 52 60

ACEF'G'(20,28,52,60) 1 1 1 1

Simplified Boolean Function = A’CEF’G’

A’CEF’'G’ is in simplified function as it is the only prime implicant that covers all
minterms.

	Boolean algebra
	Quine McCluskey Method
	Quine McCluskey Method (QMC):
	Terminologies:
	Steps for Quine McCluskey Method:

